
Big Docs Made Easy • 9

Sometimes it can be difficult to convince management to accept new thinking
or even the idea of saving money. This chapter discusses what you’ll need to
do to influence your management to implement Easy Maintenance
Documentation practices.

Reasons to implement Easy Maintenance
Documentation

Cost savings is the easiest way to motivate management to do something they
aren’t doing now or to stop doing something they are doing now.

The reasons below largely talk about “soft costs” rather than “hard costs.”
When you spend $50,000 to move your company to a new location, that is a
hard cost. When the productivity of a group of writers decreases because of a
“cost-saving” or down-scaling measure, the cost to produce documentation
increases. This specific cost increase is a “soft cost” and is notoriously difficult
to track.

Reason One: Save Time

In this case, implementing Easy Maintenance Documentation will save the
writers time, which translates into saving money. If it takes five minutes to do
something one way, and 5 seconds to do it another way, that is a potential
savings of four minutes, 55 seconds each time that action is carried out. Let’s
compare how long it takes to manually update a block of text in five locations
versus using a text inset. In this example, it takes a writer one minute to update
a block of text once. Multiply that by five locations and that is five minutes.
Add in the time to open each of the remaining four locations (assuming you
have some way of tracking all the places that the block of text is used), perhaps
three minutes to open, Find/Change, save, and close each file, that comes to 12
minutes. Total time, 17 minutes.

If the writer used a text inset, she would go to one location and update the text;
that is one minute. Every place it is used, it is updated; thus time to update all
five files is one minute. That’s a savings of 16 minutes. At the conservative
estimate of $40/hour for a writer’s time, that translates to a savings of $10.67
each time the text needs to be modified.

2Building a Business Case

2 Building a Business Case
 Reasons to implement Easy Maintenance Documentation

10 • Big Docs Made Easy

Another example of an easy way to save time (read: the company’s money)
would be to use a variable instead of typing it manually. Then when the
definition for the variable needs to change, the writer changes it in one location
and it is automatically updated everywhere it is used. The writer doesn’t have
to Find/Change through all 400 pages of the document. Say that the writer
typed the name of the product in 100 places in a document of 10 FrameMaker
files in a book. To Find/Change through all the files in the book (assuming
you’re using FrameMaker 6/7) might take three minutes per file. That’s 30
minutes (it is much longer if you’re using v5.x). By using a variable, the writer
changes the definition in one place, which might take a minute, and then
imports the definition to all the files in the book, which might take another
three minutes. Total time, four minutes. That’s a savings of 26 minutes, or
$17.33.

Reason Two: Adherence to Enterprise Styles

By doing everything outlined in this book, you will ensure uniformity of style
and adherence to a style sheet.

This can be of great importance; one company spent $250,000 to have their
templates created. Understandably enough, they wanted all the documents to
look the same.

Even if your company hasn’t spent $250K on templates, if you have gone to
the trouble and expense to create templates, you want to use those styles.
Another aspect of adherence to templates is the conversion of FrameMaker
documents to Structured FrameMaker; by using existing formats in the
template, paratags, chartags, and tabletags can be easily converted to elements,
and then saved to SGML. When converting FrameMaker/Structured
FrameMaker documents to HTML using WebWorks Publisher, if users strictly
adhere to the styles in FrameMaker, the conversion to HTML (using the
templates created in WebWorks Publisher) will be nearly effortless. If not,
someone will have to go back into the FrameMaker/Structured FrameMaker
documents and remove overrides and correctly apply formats.

Reason Three: Improved Morale

To troubleshoot a series of templates (or to create a series of templates), first
sit down with the users and listen to their problems. One of the main
complaints you may hear is that they don’t like the templates. After a bit of
digging, you’ll get past the generic objections and uncover the real reasons,
which usually turn out to be one of the following:

• The users don’t like the names of the formats.

• They don’t know how to use the existing formats, so they create their own.

• Someone else designed the formats and they didn’t have a voice in the
creation.

Big Docs Made Easy • 81

The Second Tenet of Easy Maintenance Documentation
Uniformity

The Second Tenet is: Every document within in a group of related documents
that uses the same set of formats must have the exact same definitions for all
formats.

This means that all variables, paratags, x-ref formats, condtags, master pages
and so on, must have the same definitions throughout the book. FrameMaker’s
ability to create format overrides, such as hardcoded text formats or local
variations on a chartag, paratag, or tabletag, is diametrically opposed to the
Second Tenet.

This chapter discusses the tools that enable you to ensure uniformity of
formats across your entire enterprise or just across your own document set.

As mentioned in the First Tenet, having a single source allows for global
management of formats. In this chapter, you’ll see how uniformity of styles
also means global management of styles.

The Second Tenet explains the following:

• How to use a Local Template to ensure uniformity across documents

• How to control formats across many documents

• The process for creating a template

• How to create the various formats that comprise a template

Master Template and Local Template

Imagine a tool that gives you the power to control the overall appearance of all
the documents across your entire enterprise, at discrete levels and within
groups of documents.

This tool allows you to define how all the product names, logos, addresses, and
phone numbers, for your entire company can be spelled and formatted.

The tool is tightly integrated to work with every FrameMaker product on every
platform.

Imagine that you that you don’t have to spend any money to buy this powerful
tool; it is part of FrameMaker.

Where is this tool? It is called the Master Template. It doesn’t exist in any
FrameMaker menu and it isn’t documented in any FrameMaker manual or any
third-party FrameMaker book, except this one.

The Master Template is largely conceptual rather than an actual tool, so the
use of the Master Template requires conceptual training to understand it and
discipline to use it.

The Second Tenet of Easy Maintenance Documentation
 Master Template and Local Template

82 • Big Docs Made Easy

At the highest level within a company, you use a Master Template to control
formats that are used in every document produced by the company. Then as the
focus becomes more specific, you might use Site Templates, Workgroup
Templates. When you get to the finest level of granularity in this concept, at
the individual document level, you use Local Templates to create and modify
formats that are specific to the document.

Differentiating Between Templates and Master Template/Local
Template

FrameMaker uses some terms differently, so this section defines the
differences between them.

Template

As used by FrameMaker and Big Docs Made Easy, a template is a series of
formats stored within a FrameMaker document that can be used to create a
new FrameMaker document. Usually, a template is saved to the Templates
directory. The Templates directory is special: any document stored therein can
be used to create blank documents containing all the pre-defined formats,
without affecting the original document.

Master Template

In this book, the term Master Template is used to describe a place in which all
the common definitions used within a closed group of documents are stored,
maintained, and referred to. There can be as many levels of Master Templates
within a company, site, or workgroup as necessary. Here is an example:
WorldCall uses four levels of Master Templates: Global, Business Unit, Site,
Workgroup. At the document level, they have local-templates.

Local Template

The Local Template is a repository for all formatting information pertinent to a
particular book. This is similar to a Master Template, but at the lowest level in
the hierarchy. For example, the Master Template might define master page
layouts for all documents, such as Right, Left, Cover, FrontMatterRight,
FrontMatterLeft, FrontMatterCover, IXRight, IXLeft, and IXCover. Each master page
also contains a placeholder variable for the manual name, part number, and
revision level. The Local Template allows you to define a value for each of the
placeholders for the book.

Master Templates and Local Templates are the embodiment of the Second
Tenet; using them enables you to ensure that all formats used in all of the
documents in a book will have the exact same definition, and hence, a uniform
appearance for every document in the book.

The Second Tenet of Easy Maintenance Documentation
Differentiating Between Templates and Master Template/Local Template

Big Docs Made Easy • 83

When you use and enforce uniformity, you are implementing the Second
Tenet; you won’t have to worry about overrides created by users (which they
then forgot about and someone else inherits). When you create robust formats,
use them uniformly, and maintain them from one place rather than from
several places, you are implementing the the First Tenet. Another way to look
it is, if the the First Tenet is the heart of Easy Maintenance Documentation,
then the Second Tenet is its soul.

The Second Tenet of Easy Maintenance Documentation
 Master Template and Local Template

84 • Big Docs Made Easy

Example of Master Template / Local Template Implementation

WorldCall (WC) has graphic standards and trademarks that must be used in
specific ways to protect their trademarks. They created a Global Template that
is used as a basic building block for every subordinate Business Unit
Template. It contains logos, typefaces, addresses and phone numbers that must
be used in specific ways. When they are included in the Templates at the next
level down, these are automatically controlled. The Global Template is
controlled from the world-wide headquarters and is rarely changed. However,
WC has business units on three continents, and sometimes the language used
is different. For each business unit, a different Master Template was created
that contains some localized addresses and phone numbers, and some
solutions to problems that only occur in FrameMaker with certain languages,
such as Chinese, Japanese, or Korean.

local-
template for
Chip Fab
Process
Handbook

Global
Template

Manufact
uring
Business
Unit
Template

Wilsonville
Site
Template

Corvallis
Site
Template

Manufactu
ring
Document
ation
Workgroup
Template

Software/
Hardware
Document
ation
Workgroup
Template

local-
template
for User’s
Guide

Process
Workgroup
Template

Quality
Assurance
Workgroup
Template

local-
template for
Repair
Reference

local-template
for
Programming
Reference

Enginering
Business Unit
Template/
Site Template

Site
Template

Site
Template

Marketing
Business
Unit
Template

Marketing
Document
ation
Workgroup
Template

The Second Tenet of Easy Maintenance Documentation
Controlling Formats Across an Enterprise

Big Docs Made Easy • 85

Within each business unit of WC, there are sites scattered hundreds of miles
apart from each other or have completely different product lines. It would be a
waste of resources to carry formats in the Global Template for one business
unit that are not used by other business units. Therefore, the reason for the
hierarchy of templates is to manage the formats that are common to all
documents that use those formats.

Controlling Formats Across an Enterprise

Within each site, there may be as many as ten different Workgroups. Each
workgroup has different requirements for presenting information: some
workgroups provide training documentation. Other workgroups provide end-
user documentation. Each workgroup decides how it will document its
particular type of work and what is required in their template.

Finally, each document requires different standards, different variables and so
on. To carry document-specific variables at any other level would be a
tremendous waste of resources. However, that is not to say that at some time, a
writer within a workgroup couldn’t petition the administration to include in the
parent template a solution, variable, or some other piece of often-used text.

This concept of one template controlling many can be scaled up or down as
enterprise needs dictate.

Each level of the template adds in only those formats that will be managed for
subsequent layers of templates.

The Second Tenet of Easy Maintenance Documentation
 Master Template and Local Template

86 • Big Docs Made Easy

Here is how one branch of the Templates tree concatenate formats from the
Master Template down through the various other levels of intermediate
templates to the Local Template for a specific document:

Global Template

Variables
Revision=0.0.0
RevDate=00/00/00
PartNumber=P/N 000000
ManualName=Document

Master Pages
Left, Right

Paratags
H1, H2, H3, H4, Body

Chartags
Bold, italic

Manufacturing Business Unit
Template

Variables
Revision=0.0.0
RevDate=00/00/00
PartNumber=P/N 000000
ManualName=Document

Master Pages
Left, Right, Cover, IXCover,
IXLeft, IXRight

Paratags
H1, H2, H3, H4, Body, Chapter

Chartags
Bold, italic, Code

Wilsonville Site Template

Variables
Revision=0.0.0
RevDate=00/00/00
PartNumber=P/N 000000
ManualName=Document

Master Pages
Left, Right, Cover, IXCover, IXLeft,
IXRight, FrontMatterLeft,
FrontMatterRight

Paratags
H1, H2, H3, H4, Body, Chapter

Chartags
Bold, italic, Code

Local Template for Chip Fab
Process Handbook

Variables
Revision=1.3.8
RevDate=09/18/03
PartNumber=P/N 314-098
ManualName=Technical Reference

Master Pages
Left, Right, Cover, IXCover, IXLeft,
IXRight, FrontMatterLeft,
FrontMatterRight

Paratags
H1, H2, H3, H4, Body, Chapter,
Example, Note, FigCap, Action

Chartags
Bold, italic, Code, menu, Action,
Var, Item, Picklist, Insert, Callout,
Option

Process Workgroup Template

Variables
Revision=0.0.0
RevDate=00/00/00
PartNumber=P/N 000000
ManualName=Document

Master Pages
Left, Right, Cover, IXCover,
IXLeft, IXRight, FrontMatterLeft,
FrontMatterRight

Paratags
H1, H2, H3, H4, Body, Chapter,
Example, Note, FigCap, Action

Chartags
Bold, italic, Code, menu

Definitions for the actual document
are modified in the local-template
for each document

Formats that are added into
and controlled by a given
template are shown in bold

The Second Tenet of Easy Maintenance Documentation
Controlling Formats Across an Enterprise

Big Docs Made Easy • 87

Controlling Formats within a Book

Let’s suppose that you are doing all the things that were recommended in the
first section; you are happily creating your variables and using them
throughout your book. Then a subject matter expert (SME) calls you to say
that the names of three of the fields have changed. No problem, you think. You
have defined them as variables. You open one of the chapters of the book, open
the variables dialog box, change the definition and you’re done. But what
about the other chapters where you need to change the definition? Do you
open all the chapters in the book and change the definition in each one?

There is an easier way: change the variable definition in one place and import
that definition to all the other chapters. Two easy steps, rather than many
repetitive steps. Yes, you could do it by simply importing the changed chapter
to all the other chapters of the books, but you may find it better to obey the
First Tenet and create a central location that contains all the Source, change it
there and then import those changes to everywhere else. Until FrameMaker
comes up with a better scheme of updating global definitions, this works well.
But it presupposes a few things: that you have defined your master pages to
have different names when they have a different appearance in other
documents. You may inherit documents where the master pages for the TOC
had the same names as the document pages but were laid out differently. When
you import the formats from a document into a TOC, the TOC master page
definitions suddenly look just like the normal document pages. So, when you
import formats, make certain that you have created your master pages to have
unique names.

Note: For those among you who are saying, “Just uncheck the Page Layout option in
the Import formats dialog box and import the other formats”; if you ever forget to do
that, your page definitions are likely to be overwritten. It’s easier to have unique
names for unique formats, than forget and have to recreate them.

Having a Master Template also allows you to choose if a paragraph tag or
character tag that you create for one document can be re-used in other
documents. You may create paragraph tags for one document that aren’t
needed anywhere else in the document; in this case, leave them there and don’t
import them into the Master Template. However as soon as you use them in
more than one document, import the definition into the Master Template and
import the definition into the rest of the book.

Note: Make CERTAIN that you have unique names for every format or style; if you
don’t, as soon as you import definitions to all documents they will be overwritten. This
can backfire when you have modified a paragraph tag in one document; this is a
format override as well as a violation of the Second Tenet.

The Second Tenet of Easy Maintenance Documentation
 Master Template and Local Template

88 • Big Docs Made Easy

Levels of Granularity for Master Template/Local Template

Your organization may be large enough to use a Global Template > Business
Unit Template > Site Template > Workgroup Template > Local Template
hierarchy, but you may not be able to implement a Master Template hierarchy
above or even within your own workgroup. You can still implement a Master
Template/Local Template setup just for your documents. A simpler version
would be to have only one Master Template that controls a large group of
Local Templates, as shown below:

You could also organize your Master Template/Local Template by document
types rather than by workgroups.

Master
Template

Local
Template

Local
Template

Local
Template

Local
Template

Local
Template

The Second Tenet of Easy Maintenance Documentation
Open Access

Big Docs Made Easy • 89

Implementing Master Templates

There are two ways to implement Master Templates: Open Access and
Controlled Access.

Open Access

With open access, the template administrator has read/write access to the
Master Template. The users have read-only access to the Master Template and
full read/write access to their Local Templates. By allowing users to have
access to the Master Template and to their Local Templates, users can open
and import the formats contained in the Master Template into their Local
Templates. The users can then also modify the Local Templates for their
documents to add paratags, chartags, x-ref formats, and variables.

All formats, master pages, and reference flows are contained in the Master
Template. When definitions are changed in the Master Template, the users
import the definitions into their Local Template(s) and then clean up their
Local Template(s). The Local Template contains locally changed variables,
such as document names, system names, manual numbers, revision numbers,
revision date, and so on. In this way, the Local Template is under the control of
the user rather than the template administrator and allows some flexibility on
the part of the user.

Advantages

• The maintenance of the Local Templates is the user’s responsibility. If the
user knows how to use FrameMaker, this can reduce the burden on the
template administrator.

• Users can be in control of their own documents, have discretion in creating
new formats, and not be forced to “toe the line” in every regard.

• Template administrators are peers, not petty tyrants of style.

Disadvantages

• Users may add local definitions that may conflict with other layout
requirements, or content repurposing templates (such as XML/HTML).

• The maintenance of the Local Templates is the user’s responsibilities. If the
user is not familiar with FrameMaker, he or she could mismanage the Local
Template and get bogged down in administring the Local Template.

The Second Tenet of Easy Maintenance Documentation
 Implementing Master Templates

90 • Big Docs Made Easy

Controlled Access

The other method is controlled access to Master Templates and Local
Templates. The template administrator is responsible for updating the
definitions contained in the Master Template, importing those definitions into
the Local Templates of all documents, and then modifying the definitions for
local formats and variables in each Local Template. Only the template
administrator has read/write permissions to the Master Template and to each
documents’ Local Template. The Local Templates can be read by the users but
cannot be modified. This ensures that all changes to the documents are known
and agreed to by the template administrator.

In this method, the user imports the definitions from the Local Template into
the documents when the Master Template changes. It is the template
administrator’s responsibility to notify users of changes in the Master
Template.

A whimsical way to think about controlled access: it is training wheels for
structured documentation using XML or SGML. When you use structured
documents, the DTD (Document Type Definition) or EDD (Element Definition
Document) and stylesheets are used by the entire group and must be
administered centrally.

Advantages

• Absolute control of all formats, and ultimately, the appearance of all
documents.

Disadvantages

• The users may chafe at the inflexibility in this situation

• The template administrator position becomes a full-time job

Templates Directory

Once the Master Template is finished, create a set of blank documents (which
are then stored in the Templates directory
[$FMHOME/fminit/usenglish/Templates or ..\Program
Files\Adobe\FrameMaker\Templates]) that have only the approved
formats in them. Users then create new documents by opening copies of the
Templates.

Blank Templates Directory This directory contains read-only versions of every
type of FM File contained in the FrameMaker book for the document. That
means there is a chapter template, a TOC template, an IX template, and a
template for any other specialized parts of a book.

You will create this directory in Exercise 69 on page 264.

The Second Tenet of Easy Maintenance Documentation
Templates Directory

Big Docs Made Easy • 91

Standardizing Nomenclature

The Second Tenet contains the following corollary: standardize the
nomenclature used in a project.

Assigning one standard name for a thing can really help your project. When all
the writers and managers involved in a project agree on the terms used to
describe the parts of a project everyone works together better. The reason is
simple; when everyone uses the same term to describe something everyone
knows what is being described! It is extremely hard to work with people who
use different terms than the rest of the group.

For more information, see Agreeing on Nomenclature on page 419.

Document Analysis

When you design your document, probably you consider how it will look first
and then how easy it will be to maintain. You might find it faster to answer a
few questions before you design your templates to make maintaining your
document a lot easier.

Begin the process by asking general questions.

• Are you writing a user’s manual, a technical journal, a technical reference
manual, an illustrated parts catalog, a field service/repair/installation
manual, an operation, administration, and maintenance manual, a process
manual, or a product specification document?

Let’s assume the answer from the previous question is a user’s manual; now
you can start to focus on the needs of the type of document.

• Do you need complex page numbers (i.e., page 5-24) or will consecutive
page numbering (i.e., page 125) be accepted by readers?

• Will your document be printed or viewed on-line? If printed, you’ll want
double sided; if viewed on-line, you’ll want single-sided.

• Do you want the first page to look different from the rest of the pages?

• Do you want complex section numbers (i.e., 5.4.4 Optimizing the Link
Layer)?

• Do you want the chapter title/appendix title text or chapter
number/appendix letter to appear as a Running/Header Footer?

• Do you want the section title number or text to appear as a Running/Header
Footer?

• Do you want the front matter of your book (i.e., preface, TOC, LOP, LOT,
LOF, etc.) or the index to look different from the main part of your book?

• Will your document re-use text that is already written?

The Second Tenet of Easy Maintenance Documentation
 Choosing a Template Style

92 • Big Docs Made Easy

• Do you have extensive procedures, extensive description and theory, or a
mixture of both?

• Do you have company logos, company specific nomenclature, different
names for the same product directed at different markets?

• Do you have to reference specific text or programming code that cannot be
altered only read?

Choosing a Template Style

There are too many ways to lay out a template to reasonably list them all.
However, there are discrete template style categories, which can be listed:

1 Side Heads on, with In Column and Across All Columns and Side Heads
(AAC+SH) headings

2 No Side Heads, with Indents to emulate Side Heads.

3 With Chapter-level TOCs (CTOC)

4 Without CTOCs

5 Complex Page Numbering (compound Chapter number and Page number)

a with compound autonumbering for Tables, Figures, Exercises,
Examples, and Headings

b with consecutive autonumbering for Tables, Figures, Exercises, and
Examples.

c no autonumbering for Tables, Figures, Exercises, Examples, or Headings

6 Simplex Page Numbering

a with consecutive autonumbering for Tables, Figures, Exercises,
Examples etc., and Headings

b no autonumbering for Tables, Figures, Procedures, Examples, etc., and
Headings

Use Side Heads or In-Column with Indents?

One of the main points of bifurcation is whether to use Side Heads or to use
indents to emulate Side Heads. The reason that this is a big decision is that if
you use Side Heads, the side head space can be turned on or off globally: it is a
lot harder to change the indents of many paratags that emulate Side Heads.
Also if you want to use the same paratags in table cells as well as in main body
pages, you have to skip using emulated side heads because they will be
indented in the table cells, which looks a bit odd, not to mention uses a lot of
space in your table cells.

The Second Tenet of Easy Maintenance Documentation
Chapter-Level Tables of Contents (CTOCs)

Big Docs Made Easy • 93

Turning Off Side Heads for Specific Paratags

If you use side heads, you will want some paratags to go across side heads.
Unfortunately, you can’t turn off side heads for individual text frames that use
the same flow tag. (If text frames don’t have a flow tag, you can turn off side
heads for each text frame, but that is another issue.)

The only way to control this is to configure paratags to go Across All Columns
and Side Heads. For more information, see Using Multiple Columns or
Multiple Text Frames? on page 156.

In the following exercises, you will build a local-template for the most
complex setup: complex page numbering with CTOCs, compound
autonumbering for tables, figures, exercises, and headings with side heads.

Chapter-Level Tables of Contents (CTOCs)

A chapter-level TOC is a table of contents that has greater detail than the TOC
that is created for an entire book. A book-level TOC may have only first- and
second-level headings in it. A CTOC may include first-, second-, and third-
level headings, tables, figures, and procedures. This much detail would be
overwhelming in a book-level TOC.

Complex Page Numbers

A complete implementation of complex page numbering actually has three
parts:

1 Compound autonumbering paratags so that the Chapter-level counter is
correctly carried through in subordinate paratags, such as Figures, Tables,
and Exercises/Examples/Procedures, etc. This is much easier to accomplish
in FrameMaker 6/7 by using the <$chapnum> building block.

2 The <$chapnum> and <$currentpagenum> building blocks that are in
headers or footers on the master page.

3 If you use x-refs with page numbers, they also must include the
<$chapnum> and <$curpagenum> building blocks.

We’ll talk about these three issues in greater detail in Master Page Layouts on
page 141.

Simplex Page Numbering

The issue of template design becomes easier when you don’t use compound
autonumbering for figures, tables, exercises/examples/procedures, etc.

The Second Tenet of Easy Maintenance Documentation
 Choosing a Template Style

94 • Big Docs Made Easy

Note: Some user manual styles have eliminated figure numbers and table numbers;
this eliminates the need to refer back to a figure several pages back because the
figure or table that is relevant to the text is kept near it, such as within the same two-
page spread.

The Second Tenet of Easy Maintenance Documentation
Simplex Page Numbering

Big Docs Made Easy • 95

Roadmap for Complex Template Creation

As we mentioned before, the Local Template, Master Template, and
Style Guide that you will create by completing the exercises in this book
incorporate the most difficult of formats of all the discrete categories:

• AAC+SH (Across All Columns and Side Heads) with Indents to emulate
Side Heads, along with Side Heads

• CTOCs

• Complex Page Numbers

• Compound autonumbering for Tables, Figures, Exercises, Examples, and
Headings

In the sections that follow, you will be given step-by-step exercises for
designing a Local Template, a Master Template, and a Style Guide. Here is the
roadmap for this phase:

1 Perform a document analysis (see Document Analysis on page 91)

2 Choose a Template design (see Choosing a Template Style on page 92)

3 Create paratags, chartags, x-refs, condtags, variables (see Creating a Local
Template on page 97)

4 Understand and create the components of a master page (see Master Page
Layouts on page 141)

a. Set up complex page numbers (see Complex Page Numbering on page 146)

b. Using Running H/Fs to extract text (see Using Running H/Fs to create
Complex Page Numbers on page 147, Running Header/Footers in Headers
and Footers on page 145, and Efficient Use of Running H/Fs on page 162)

c. Create any other formats to fulfill your style requirements.

5 Create x-ref formats to include the <$chapnum> building block (see Multiple
Autonumber Counters Within a Series on page 129, Creating X-Refs to Split
Paratags in One Format on page 191, and Using X-Refs with Complex Page
Numbers on page 181)

6 Generate all generated flies (TOC, IX, etc.)

a. Format paratags

b. Format master pages and reference pages

c. Copy master pages and reference pages into Master Template

d. Copy master pages and reference pages into Local Template (see Creating
& Maintaining Reference Flows on page 213)

The Second Tenet of Easy Maintenance Documentation
 Roadmap for Complex Template Creation

96 • Big Docs Made Easy

7 Create Chapter-level TOCs (see Chapter-Level Tables of Contents on
page 194)

8 Expand the book and address general book issues (see Book Building Tips on
page 541)

a. Breaking up a long chapter into several documents (see Interesting Uses
for Hidden Anchored Frames on page 377)

b. Using Hidden Anchored Frames to carry autonumber formats (see
Interesting Uses for Hidden Anchored Frames on page 377)

c. Creating complex Index Entries (Marker Tips on page 505)

d. Adding a Title to a TOC and an IX (see Generated Files Issues on
page 324)

9 Build a Master Template (see Building the Master Template on page 251)

10 Build the Style Guide that describes how to use all the formats in the template

11 Create templates for the various parts of a book from the local-template

Before you can create the paratags that contain the autonumbering formats, it
helps to understand what can be automatically extracted and formatted on the
master pages.

Big Docs Made Easy • 471

Objectives

In this chapter, you will learn how to:

• Create automatic banner headings

• Set x-refs in graphics

• Recognize and solve graphics problems

• Create “boxed” callouts

Automatic Banner Headings

The main reason to create automatic banner headings is to avoid repositioning
manually drawn and filled rectangles when text is added or deleted or the
pagination changes.

PageMaker allows the format trick of a thick line above or below a paragraph
to sit behind the text, so it is a simple matter to create a banner heading.

A posting to the FrameUsers website (http://www.frameusers.com) emulated a
similar solution in FrameMaker. It required two paragraphs; one to hold a
Reference Frame and one to hold the text with NEGATIVE space above so
that the text is positioned over the banner.

There are two problems with this trick:

1 The text disappears every time you try to edit it; to make it reappear, you
have to refresh the screen ([Windows only] Window > Refresh; or
Control-l [lowercase L]). For an example of this, see
../bdme/ch16/banner.fm.

2 The banner is only as wide as the graphic stored in the Reference Frame.
The downside to this is if you want to have variable widths of banners for
your headings, you’ll have to have many different paragraph tags and
Reference Frames.

Another solution requires you to create a MIF version of a document and set
parameters for <FDY %> for the paratag. While this is definitely the terrain of
power users, it is not easily maintained. If you change any of the parameters
for the paratag (using the Paragraph Designer), the customized settings for
<FDY %> are lost and you must start again. And you’ll have to set the values
for each MIF file that uses this solution, which is a potential maintenance
problem.

16Graphics Tips and Tricks

16 Graphics Tips and Tricks
 Automatic Banner Headings

472 • Big Docs Made Easy

The ostensible solution of using an anchored frame to hold a filled rectangle
doesn’t work either because the anchored frame (regardless of the anchoring
position or type) and its contents sit above the text, rather than behind it, as
shown in the example below.

This is a bunch of text
The banner above should appear behind this text.

The best way to create reversed headings that automatically move with the text
is to create a single-cell table.

Exercise 133 Using Tables to Create Banner Headings

1 Open ../bdme/ch16/local-template.fm and find the Scratch Work
Area section.

2 Move your insertion point to the end of this section, and create a blank
paragraph (or use an existing blank paragraph).

3 Insert a table with the following settings:

4 With your insertion point in the table, open the Table Designer.

5 In the Table Tag: box, delete the contents and type: BannerHeading

6 Click the Commands pop-up menu and select New Format.

7 In the New Format dialog box, confirm that both Store in Catalog and Apply
to Selection are selected. Click Create.

Property Value

Format Blank

Columns 1

Body Rows 1

Heading Rows 0

Footing Rows 0

16 Graphics Tips and Tricks
Using Tables to Create Banner Headings

Big Docs Made Easy • 473

8 Modify the properties of BannerHeading using the settings in the table below:

9 With your insertion point in the table, create a new paratag based on CellBody
using the settings shown in the table below:

a. Open the Paragraph Designer. In the Paragraph Tag box, delete CellBody
and type: BannerHeading

b. Click the Commands pop-up menu and select New Format.

c. In the New Format dialog box, confirm that both Store in Catalog and
Apply to Selection are selected. Click Create.

d. Modify the properties for BannerHeading using the settings shown in the
table below:

Property Sheet Property TableTag

BannerHeading

Basic Default Cell Margins

Top 5

Left 5

Bottom 3

Right 5

Ruling All Rulings None

Shading All Heading, Footing, Body Shading 100% Black

Property Sheet Property Paratag

BannerHeading

Default Font Family Helvetica (or Arial)

Size 14

Angle Regular

Weight Bold

Color White

Basic Indents 0

Alignment Left

Space Above/Below 0

Line Spacing 17

16 Graphics Tips and Tricks
 Automatic Banner Headings

474 • Big Docs Made Easy

Explanation: Once a printed document leaves your hands, for all intents and
purposes, it is beyond your control. It will spend its life on various copier beds and be
copied and recopied and recopied and recopied…with copies of copies of copies
being distributed. It may be faxed, sometimes through several generations. If you use
reversed text, that is light text on dark background, after a few generations of
reproduction, the text will start to get “drop-ins,” eventually rendering the reversed text
unreadable. You may find that a sans-serif font (such as Helvetica) Bold, 14 points or
larger, Regular (neither oblique nor italic), will stand up better to copying, faxing etc.,
and will be more readable in the original document.

10 With your insertion point in the BannerHeading table, type: The easy way
to make banner headings
The text wraps and forces the cell to grow vertically

11 Resize the table so that the text doesn’t wrap (unless, of course, that is the
effect that you want) using one of the following methods:
• Table > Resize Columns, select To Width of Selected Cells’ Contents, and

click Resize.

• Press !tz to open Resize Columns dialog box, select To Width of
Selected Cells’ Contents, and click Resize.

• Press !tw to resize column(s) so no paragraphs in selected cell(s) wrap

Below is an example.

Note: This is most effective with multi-column layouts where the heading isn’t very
wide.
You can also experiment with Default Cell Margins to create different appearances for
your banner headings.

12 To ensure that every time you create a BannerHeading table, the cells are
formatted with the BannerHeading paratag, update the table definition.

a. With your insertion point still in the table, open the Table Designer.

b. Click Update All.

13 Save your work.

The easy way to make banner headings§

16 Graphics Tips and Tricks
Parts Diagram with X-Refs to a Parts Table

Big Docs Made Easy • 475

X-Refs in Graphics

Imagine that you have a graphic that refers to a list of parts in another place in
the document. The graphic has been generated outside of FrameMaker, but
you want to manage the callout text within FrameMaker.

1 Create the graphic (or have the graphic created) so that the places for the
callouts are blank. You will put those in when you bring the graphic into
FrameMaker.

2 Import the graphic by reference into your document. FrameMaker
automatically inserts the graphic in a centered anchored frame.

3 Using the Text Frame tool, draw text frames in the anchored frame in the
appropriate places where you want the callouts.

4 Put your insertion point in the first text frame and insert an x-ref to the
appropriate paragraph in the list of parts.

5 Continue inserting the remaining x-refs using Serial Insertion of X-Refs.
(For more information, see Serial Insertion of X-Refs on page 461.)

By doing this, you manage the complete document in FrameMaker and the
graphics are brought in with as little modification as possible. This allows you
to re-use graphics; if the graphic had specific references, you would have to
change the references in the source graphic, which would be a waste of time
since FrameMaker handles that sort of thing easily.

You may have created documents with callouts by manually typing Text Lines.
The problem with Text Lines is that the text cannot be x-ref’d, formatted with
a paratag, cannot contain a marker, and cannot be included in a generated list.
By using text frames, you have text that can be tagged with a flow tag,
formatted with a paratag (and then globally managed), x-ref’d to a table and
included in a generated list.

A good example of how to use this is a parts diagram.

Exercise 134 Parts Diagram with X-Refs to a Parts Table

Imagine that you have a parts diagram that refers to a parts list, such as an ATA
(Air Transport Association) IPC (Illustrated Parts Catalog) or a mechanical
drawing and a bill of materials.

Rather than using a drawing with a parts list in it, use just the graphic and
create x-refs to a separate parts table that you can create and maintain in
FrameMaker.

18 Master Page Tips
Creating the Paratags

Big Docs Made Easy • 531

Marching Bleed Tabs

Marching bleed tabs are graphics (usually solid black boxes) at the edge of the
page farthest from the binding edge. The effect is greatly enhanced when you
trim 0.20" to 0.25" off the edge of the document after it is printed and bound;
the marks show up on the edge of the page and give a visual guide to the
various chapters.

Over the years, many solutions have been proffered for this “problem.” Really,
it isn’t a problem because if you really need tabs, have them inserted prior to
binding. However, for small runs, having custom-made, die-cut tabs created
and then inserted can increase the per manual cost by as much as $10!

Here is a low-cost solution to the Marching Bleed Tabs “problem.”

Exercise 141 Creating the Paratags

This setup assumes that you want to have no more than ten bleed tabs (that is
each tab is 0.875" wide, there is a space of 0.125" between each tab, and one-
half inch of space at the top and bottom).

Note: This exercise requires the use of the ZapfDingbats font. If you do not have this
font, this exercise will not work.

1 Create a blank portrait document. Save As bleed-tabs.fm to
../bdme/ch18.

2 Create ten paratags Chap1 through Chap10. Use Body as a starting point and
modify only the Autonumber properties.
Hint: Create the first paratag Chap1 from Body. Then use Chap1 as a starting
to create Chap2 through Chap10 and you won’t have to specify the
Autonumber Format for each paratag.

a. Define autonumber C:Chapter\ <$chapnum>

3 Go to the Right master page.

4 Create a background text frame of any size.

5 Rotate the text frame 90° clockwise (Graphics > Rotate or !gt).

18 Master Page Tips
 Marching Bleed Tabs

532 • Big Docs Made Easy

6 Using Object Properties resize and position it using the following settings:

7 With your insertion point in the text frame, create a new paratag named
BleedTab. Make sure to apply it to selection, but do not store it in the catalog.
Use the following settings:

Note: You set the first Tab stop at 0.875" repeating every 1" for nine more tabs.

8 In the newly inserted text frame, insert the Running H/F 3 variable. Modify the
definition for Running H/F 3 to be as follows:

\t<$paratext[Chap1]>\t<$paratext[Chap2]>\t<$paratext[Chap3]
>\t<$paratext[Chap4]>\t<$paratext[Chap5]>\t<$paratext[Chap6
]>\t<$paratext[Chap7]>\t<$paratext[Chap8]>\t<$paratext[Chap
9]><$paratext[Chap10]>

9 Copy the text frame and paste it.
(If you did NOT get the Add Text Frame dialog box, delete the text frame and
try again).

10 In the Add Text Frame dialog box Select Background Text Frame and click
Add.

Property Value

Width 10.729

Height 0.75

Offset from Top 0.083

Offset from Left 7.75

Property BleedTab

Default Font Family ZapfDingbatsa

a. You MUST use ZapfDingbats or this will not work.

Size 90

Angle, Weight Regular

Color Black

Basic Alignment Left

Tab Stops 0.875 Center (repeating every 1 inch)

18 Master Page Tips
Creating the Paratags

Big Docs Made Easy • 533

11 Using Object Properties resize and position it using the following settings:

12 With your insertion point in the text frame you just created, create the
BleedTabNumbers paratag. Make sure to apply it to selection, but do not store it
in the catalog. Use the following settings:

Note: The tab stops should already be set because you are basing
BleedTabNumbers on BleedTab.

13 In this text frame, click the Running H/F 3 variable and replace it with
Running H/F 4. In the Variable dialog box, change Running H/F 4 to the
following definition:

\t<$paranumonly[Chap1]>\t<$paranumonly[Chap2]>\t<$paranumon
ly[Chap3]>\t<$paranumonly[Chap4]>\t<$paranumonly[Chap5]>\t<
$paranumonly[Chap6]>\t<$paranumonly[Chap7]>\t<$paranumonly[
Chap8]>\t<$paranumonly[Chap9]><$paranumonly[Chap10]>

14 Create a new master page. Name it BleedTab and copy the layout from the
Right master page.

15 Go to the body pages and apply the BleedTab master page to the current page.

16 With your insertion point at the beginning of the document, apply the Chap1
paratag and type: n

Property Value

Width 10.729

Height 0.75

Offset from Top 0.083

Offset from Left 7.445

Property BleedTabNumbers

Default Font Family Helvetica

Size 48

Angle Regular

Weight Bold

Color White

Basic Alignment Left

Tab Stops 0.875 Center (repeating every 1 inch)

18 Master Page Tips
 Marching Bleed Tabs

534 • Big Docs Made Easy

17 Refresh the screen by pressing Control-l (lowercase L) (or Windows only:
from the Windows menu, select Refresh).
The “n” you typed is extracted by the Running H/F 3 and creates a black box
behind the white number. The white number is created by BleedTabNumbers
which is extracted by the Running H/F 4, as shown in the sample below.

18 If your document does not look like the sample shown above, go back and
repeat the steps until you get the above result.

You must be able to display the chapter number but the text “n” must also be
there for the Running H/F 3 to extract. How can the text be part of the
document without actually seeing it?

You must put the Chap1 (or Chap2, Chap3, …, Chap10) paragraph in a Hidden
Anchored Frame. But then what about the number: you want to see that in the
document. How can you display the chapter number without the “n”?

You must create a generic paratag that will simply display the value for the
Chapter Number variable. You already have this paratag, in sg.local-
template.fm; it is called ChapterNumber.

Some tweaking is still required to make this work in your templates: if you
decide to use this solution, you may want to have the bleed tabs also appear on
the title pages. If so, simply copy the two text frames you created on the
BleedTab master page and paste them on any other right-hand master page.

You’ll probably want the Right master page to use this layout so you don’t have
to manually apply the BleedTab master page to every body page.

Also, you’ll need to change the Running H/F usage a bit, since this solution
uses two of them, and overwrites the original definition for Running H/F 3,
which was used to inset the non-breaking hyphen in the complex page
numbers. You may choose to have fewer Running H/Fs in your headers or
eliminate complex page numbers, which would free up a Running H/F.

Use Chap1 for chapters 1, 9, 17, etc. Use Chap2 for chapter 2, 10, 18, etc. and
so on. Use Chap8 for chapter 8, 16, 24, etc.

Since each chapter uses a different paratag, the Running H/F will only extract
one number from a chapter.

The only limitation is that this has a maximum of two digits, up to 99 chapters.
Beyond that, this solution will not display the numbers correctly.

18 Master Page Tips
Other Solutions

Big Docs Made Easy • 535

Other Solutions

Unfortunately, with this solution, you can’t display more than the number.
Inserting several black boxes will not work because the boxes will not sit flush
up against each other; thus text dropped out in the spaces between the boxes.

To have text displayed in your bleed tabs, create 10 different right-hand master
pages, each with a Running H/F that would extract the text of a
Header/Footer $1 or Header/Footer $2 Marker. The only downside to this
solution is that in FrameMaker 6 you have to remember to apply the correct
master page to the appropriate body page for the appropriate chapter. In
FrameMaker 7, you can assign a master page to a particular paratag.

1 Save and close bleed-tabs.fm.

Running H/F Tips

Using Header/Footer Markers and <$marker1> and <$marker2> Building Blocks

In FrameMaker 5x, to create complex page numbers, you had to extract the
autonumber of a Running H/F variable, as shown below.

In FrameMaker 6/7, you only need to insert the Chapter Number variable
(<$chapnum>), as shown below.

With the introduction of the Chapter Number variable, you gain back one or
more Running H/F variables for more interesting uses.

By inserting a <$marker1> or <$marker2> building block in a
Running H/F, you can extract the content of a Header/Footer $1 or
Header/Footer $2 Marker. While you used this trick to insert the hyphen for
complex page numbers (see Using One Master Page for Complex and Simple
Page Numbering on page 158), you can do all sorts of things with this
Marker/Building Block combination.

If you had a long section name, longer than would fit in a Running H/F, rather
than extract the paratext of that paragraph, you could paraphrase the title in a
Header/Footer $1 Marker or Header/Footer $2 Marker, and have the
<$marker1> or <$marker2> building block extract it.

Running H/F3-#

<$chapnum>-#

18 Master Page Tips
 Marching Bleed Tabs

536 • Big Docs Made Easy

Exercise 142 Using <$marker1> Markers in Running H/Fs

1 Create a blank portrait document. Save it to ../bdme/ch18 as header-
footer-marker.fm.

2 Go to the master pages. In the Header, add the Running H/F 2 variable.

3 Go back to the body pages and apply the Heading1 paratag to the current
paragraph. Type:

This is a very long heading that contains too many words to
fit in a heading, which normally, I would never create, but
just to prove a point, I typed it anyway.

4 Refresh the screen (Control-l (lowercase L) to see some of the text appear
in the header.

Obviously, the heading is too long to fit in the header.

5 Move your insertion point to the beginning of the paragraph you typed
(Windows: Control-Up Arrow; UNIX: Meta-[[left square bracket])

6 Insert a Header/Footer $1 Marker. In the Marker Text box, type: A Very
Long Heading

7 Go to the master pages and change the definition for Running H/F 2 to:
<$marker1>

This is a very long heading that contains too many words to fit in a heading, which normally, I would never create, but

This is a very long heading that contains too many words to fit in a heading,
which normally, I would never create, but just to prove a point, I typed it
anyway. §

18 Master Page Tips
Landscape Pages

Big Docs Made Easy • 537

8 Go back to the body pages.
Your header should look like the example shown below:

The only downside to this solution is that unstructured FrameMaker does not
have Boolean logic capabilities. That is, you can’t have both the
<$paratext[Heading1]> and the <$marker1> building blocks in the
Running H/F 2 variable because the Running H/F would extract both sets of
text. That is, if on a previous page you had a Heading1 paragraph and then
inserted a Header/Footer $1 Marker, both the text from the Header/Footer $1
and the text from the last previous Heading1 paragraph would appear in the
header.

You could create multiple master pages, one with the <$marker1> building
block in a Running H/F and another with the <$paratext[Heading1]>
building block in the Running H/F; but then you’d have to remember which
master page to apply.

The only solution is to split the document up into pieces, so that when you
want to have Header/Footer $1 Marker text used in a Running H/F, you would
split the document at that point. You’d have no previous Heading1 paratags,
and the master pages wouldn’t shift because more text was added before the
pertinent section.

But all this is probably more work than it is worth. The easiest solution is to
make the title shorter.

Landscape Pages

If you need landscape pages in your document, rather than rotating the page,
rotate the text frame. Then when you want to globally update the layout for the
Left and Right pages, you can do this using Format > Page Layout > Column
Layout. However, this will give you a rotated text frame, which is very hard to
type in. If you must have rotated pages, create them after you have finished
modifying any master page layouts.

A Very Long Heading

This is a very long heading that contains too many words to fit in a heading,
which normally, I would never create, but just to prove a point, I typed it
anyway. §

Big Docs Made Easy • 643

This is a comprehensive list of all the building blocks that are available in
FrameMaker, where they are used, how they are used, what happens when you
use them, their power, and their limitations.

System Variables

Chapter Number and Volume Number Variables

New to FrameMaker in v6, the Chapter Number and Volume Number
variables can be used anywhere. The lines between the variable itself and its
building blocks are blurred, because throughout the rest of this chapter,
<$chapnum> and <$volnum> can be used within other variables, and other
building blocks can be used within Chapter Number and Volume Number
variables.

B Building Blocks in
FrameMaker

Table 1: Building Blocks for Chapter Number and Volume Number Variables

Building Block Definition Notes

<$chapnum> The value for the
Chapter Number, which is
specified in the Numbering
Properties window.

One of these building blocks must be present
in the Chapter Number or Volume Number
variable.

<$volnum> The value for the Volume Number,
which is specified in the
Numbering Properties window.

B Building Blocks in FrameMaker
 System Variables

644 • Big Docs Made Easy

<$curpagenum> Specifies the current page of the
document.

Don’t use either of these two building blocks
in either the Chapter Number or the
Volume Number variable simply because they
would limit their use. Presumably, you could
add them to create complex page numbers,
but that is better handled within the header or
footer and chording the Chapter Number or
Volume Number variable together with one of
the Page Variables (see Page Variables on
page 645).

<$lastpagenum> Specifies the last page of the
document.

<$paranum[paratag]> Extracts the complete autonumber
of the preceding paragraph with
the paratag indicated in the
brackets.

Don’t use either of these two building blocks
in either the Chapter Number or
Volume Number variable simply because the
would limit their use.

<$paranumonly
[paratag]>

Extracts only the number portion
of the autonumber of the
preceding paragraph with the
paratag indicated in the brackets.

<Chartag> Format the text following the
building block with the character
format chartag

While you can type in a chartag name before
you create it, the chartag must be created in
the Character Designer before the characters
will display the formatting.

Table 1: Building Blocks for Chapter Number and Volume Number Variables (Cont’d)

Building Block Definition Notes

B Building Blocks in FrameMaker
Page Variables

Big Docs Made Easy • 645

Page Variables

Generally, these variables are used in background, untagged text flows, such as
Headers and Footers, but they can also be used on body pages.

How these can be used

You might prefer to use the default definitions of these two variables. While
you could alter the definition of Current Page# to be

<$curpagenum> of <$lastpagenum>

which would give you the page number and then the last page and would look
like this:

13 of 16

Table 2: Current Page# and Page Count Variables

Building
Block

How Used

<$curpagenum> Specifies the current page of the document.

<$lastpagenum> Specifies the last page of the document. This variable does not count the last page in
a book, only the last page in the current document. If you want to count pages in a
book, you must create a custom API using FDK or put a marker on the last page of
the document and create an x-ref to that marker on the master page. One word of
warning: if that marker is moved or text or other files are placed after that marker, it
will no longer be accurate. This is a work-around at best. For more information, see
Page Count in Book Files on page 461.

<$chapnum> The value for the Chapter Number building block, which is specified in the Numbering
Properties window.

<$volnum> The value for the Volume Number building block, which is specified in the Numbering
Properties window.

Note: Don’t use either of these two building blocks in either of the page number
variables simply because they would limit their use. Presumably, you could add them
to create complex page numbers, but that is handled better within the header or
footer and chording the Chapter Number or the Volume Number variable together
with one of the page number variables.

<Chartag> Format the text following the building block with the character format chartag.
While you can type in a chartag name before you create it, the chartag must be
created in the Character Designer before the characters will display the formatting.

B Building Blocks in FrameMaker
 System Variables

646 • Big Docs Made Easy

The only problem with doing this is that if you put the files in a book, the
<$lastpagenum> building block only counts pages in the current file, not
in the entire book. Thus if you had three files in a book, each with 30 pages,
the Current Page# output for the files would look like this:

For another solution to displaying a page count in a book, see Page Count in
Book Files on page 461.

Date Variables

The differences between current, creation, and modification date variables are
as follows:

• Current Date shows a dynamic date (based on the current date and time from
your OS date and time) according to the building blocks you have
configured for that variable

• Creation Date shows a static date and time based on the date the file was
created

• Modification Date shows a date based on the last date and time that the file
was changed

1

2 of 30
3 of 30

2

32 of 60
33 of 60

60 of 60

3

62 of 90
63 of 90

90 of 90

Page Number:
1 of 30

Page Number:
31 of 60

30 of 30

Page Number:
61 of 90

B Building Blocks in FrameMaker
Date Variables

Big Docs Made Easy • 647

The spelling of the Date variables is determined by the localization chosen
when installing FrameMaker. For example, if English is chosen the Date
variable might appear as December 22, 2004, and for German it might appear
as Dezember 22, 2004. The spelling shown below is based on an English
localization.

Table 3: Current Date, Modification Date, and Creation Date Variables

Building Block How Used Example

<$second> Formats the seconds without leading zero. 7

<$second00> Formats the seconds with leading zero. 07

<$minute> Formats the minutes without leading zero 9

<$minute00> Formats the minutes with leading zero 09

<$hour> Formats the hours without leading zero 6

<$hour01> Formats the hours with leading zero 06

<$hour24> Formats the hours in 24 Hour format 22

<$ampm> Provides lowercase am or pm am

<$AMPM> Provides UPPERCASE AM or PM PM

<$daynum> Presents the day of the month as a number,
without leading zero.

8

<$daynum01> As above, but with leading zero. 08

<$dayname> Presents the day of the week spelled out. Sunday, Monday, Tuesday,
etc.

<$shortdayname> Presents a three-letter abbreviation of the day of
the week.

Sunday = Sun, Monday =
Mon

<$monthnum> Presents the month as a number. September = 9, December =
12

<$monthnum01> As above, but with leading zero. September = 09

<$monthname> Presents the month spelled out. March, June, November

<$shortmonthname> Presents a three-letter abbreviation of the month. Mar, Jun, Nov

<$year> Presents the year as four digits. 1776, 1787, 1865, 1969,
2001

<$shortyear> Presents the year as two digits. 76, 87, 65, 69, 01

<Chartag> Format the text following the building block with the character format chartag.
While you can type in a chartag name before you create it, the chartag must be
created in the Character Designer before the characters will display the
formatting.

Big Docs Made Easy • 663

CShortcuts
Grouped by Menu

Explanation Key

Explanation Platform and
Keystrokes

Indicates a keyboard shortcut can only be
used on a Mac

M: Command-w

Indicates a keyboard shortcut can only be
used on UNIX

U: Meta-hyphen

Indicates a keyboard shortcut can only be
used on Windows

W: Control-f

Indicates a keyboard shortcut can be used on
Mac or Windows

M+W: Esc w w w

Indicates a keyboard shortcut can be used on
UNIX or Windows

U+W: Control-l
(lowercase L)

Indicates a keyboard shortcut can be used on
Mac or UNIX

M+U: Control-e

Indicates a keyboard shortcut can be used on
all platforms

All: Esc f n

Indicates a key on the numeric keypad K9

Indicates a function key, not the shifted F key F10

Some shortcuts use the Esc (Escape) key. To use these shortcuts
press and release the Esc key and then press and release each key
in succession. For example, the keyboard shortcut to save a file is:
Esc f s, which means to press and release the Esc key, then press
and release the unshifted f key, and press and release the unshifted
s key. Some Esc shortcuts use a shifted letter; for example the
shortcut to save all open files Esc f S means to press and release
the Esc key, then press and release the unshifted f key, and press
and release the shifted s key. In the rest of this book, the Esc key is
represented by the exclamation point (!).

All shortcuts shown are for FrameMaker v7. Some shortcuts work
for earlier versions as well.

File menu

To choose Shortcut

File > New All: Esc f n
M: Command-n
W: Control-n

File > Open All: Esc f o
M: Command-o
W: Control-o

File > Save All: Esc f s
M: Command-s
W: Control-s

File > Save All Open Files All: Esc f S

File > Save As All: Esc f a
M: Shift-F7

File > Revert to Saved All: Esc f r

File > Print All: Esc f p
M: Command-p
W: Control-p

File > Print Setup
File > Page Setup (Mac)

M: Shift-F8
W: Control-Shift-p

File > Send W: Esc f m

File > Send All Open Files W: Esc f M

File > WebWorks Publisher All: Esc f W

File > Import > File All: Esc f i f

File > Import > Formats All: Esc f i o

File > Import > Object W: Esc f i b

File > Utilities > Compare Documents All: Esc f t c

File > Utilities > Document Reports All: Esc f t r

File > Utilities > HTML Setup All: Esc f t h

File > Utilities > Create and Apply Formats All: Esc f t f

File > Utilities > Capture U: Esc f t p

File > Utilities > Keyboard Macros U: Esc f t k

File > Preferences All: Esc f P

File > Adobe Online M+W: Esc w w w

File > Close All: Esc f c, Esc f q
M: Command-w
W: Control-w

File > Close All Open Files All: Esc f C, Esc f Q

File > Quit (Mac)
File > Exit (Win)

M: Command-q
W: Alt-F4

Edit menu

To choose Shortcut

Edit > Undo/Redo All: Esc e u
U: Meta-Backspace
M: Command-z
W: Control-z

Edit > Cut All: Esc e x
M: Command-x
W: Control-x

Edit > Copy All: Esc e c
M: Command-c
W: Control-c

File menu (Cont’d)

To choose Shortcut

Big Docs Made Easy • 683

C Shortcuts

Shortcuts Sorted Alphabetically by Task
Explanation Key

Explanation Platform and
Keystrokes

Indicates a keyboard shortcut can only be used
on a Mac

M: Command-w

Indicates a keyboard shortcut can only be used
on UNIX

U: Meta-hyphen

Indicates a keyboard shortcut can only be used
on Windows

W: Control-f

Indicates a keyboard shortcut can be used on
Mac or Windows

M+W: Esc w w w

Indicates a keyboard shortcut can be used on
UNIX or Windows

U+W: Control-l
(lowercase L)

Indicates a keyboard shortcut can be used on
Mac or UNIX

M+U: Control-e

Indicates a keyboard shortcut can be used on
all platforms

All: Esc f n

Indicates a key on the numeric keypad K9

Indicates a function key, not the shifted F key F10

Some shortcuts use the Esc (Escape) key. To use these shortcuts
press and release the Esc key and then press and release each key
in succession. For example, the keyboard shortcut to save a file is:
Esc f s, which means to press and release the Esc key, then press
and release the unshifted f key, and press and release the unshifted
s key. Some Esc shortcuts use a shifted letter; for example the
shortcut to save all open files Esc f S means to press and release
the Esc key, then press and release the unshifted f key, and press
and release the shifted s key. In the rest of this book, the Esc key is
represented by the exclamation point (!).

All shortcuts shown are for FrameMaker v7. Some shortcuts work
for earlier versions as well.

Task Shortcut

Activate a hypertext command
without locking a document

M: Control-Option-click an
active area
U: Control-right-click an
active area
W: Alt-right-click an active
area

Add (book) > Add Files All: Esc f f

Add (book) > Index All: Esc i x

Add (book) > Index of > Authors All: Esc i o a

Add (book) > Index of > Markers All: Esc i o m

Add (book) > Index of > References All: Esc i o r

Add (book) > Index of > Subjects All: Esc i o s

Add (book) > List of > Figures All: Esc l (lowercase L) o f

Add (book) > List of > Markers All: Esc l (lowercase L) o m

Add (book) > List of > Markers
(Alphabetical)

All: Esc l (lowercase L) o M

Add (book) > List of > Paragraphs All: Esc l (lowercase L) o p

Add (book) > List of > Paragraphs
(Alphabetical)

All: Esc l (lowercase L) o P

Add (book) > List of > References All: Esc l (lowercase L) o r

Add (book) > List of > Tables All: Esc l (lowercase L) o t

Add (book) > Table of Contents All: Esc t o c

Add a reshape handle and control
points

M: Command-Option-click a
line, a polyline, polygon, or
freehand curve with reshape
handles and control points
currently displayed
U: Middle-click a line, a
polyline, polygon, or freehand
curve with reshape handles
and control points currently
displayed
W: Control-click a line, a
polyline, polygon, or freehand
curve with reshape handles
and control points currently
displayed

Add a word to automatic corrections All: Esc l (lowercase L) a c

Add a word to the document
dictionary

All: Esc l (lowercase L) a d

Add a word to your personal
dictionary (Learn)

All: Esc l (lowercase L) a p

Add columns to left of leftmost
selected column

All: Esc t c l (lowercase L)

Add columns to right of rightmost
selected column

All: Esc t c r

Add rows above top selected row All: Esc t R a

Add rows below bottom selected
row

All: Control-Return
W: Control-j

Align objects along Bottoms All: Esc j b
M: Command-Option-
Down Arrow
W: Control-F3

Align objects along Left sides All: Esc j l (lowercase L)
M: Command-Option-
Left Arrow

Align objects along Left/right
centers

All: Esc j c
M: Command-Shift-c

Align objects along Right sides All: Esc j r
M: Command-Shift-r

Align objects along Top/bottom
centers

All: Esc j m
M: Command-Option-K7
W: Control-F2

Align objects along Tops All: Esc j t
M: Command-Option-
Up Arrow
W: Control-F1

Apply a character format by typing
the first few unique characters of its
tag (until FrameMaker recognizes it)
and then pressing Return

All: Control-8
U+W: Esc q c, F8

Task Shortcut

696 • Big Docs Made Easy

C Shortcuts
 Shortcuts Alphabetically Sorted

Shortcuts Alphabetically Sorted
Explanation Key

Explanation Platform and
Keystrokes

Indicates a keyboard shortcut can only be
used on a Mac

M: Command-w

Indicates a keyboard shortcut can only be
used on UNIX

U: Meta-hyphen

Indicates a keyboard shortcut can only be
used on Windows

W: Control-f

Indicates a keyboard shortcut can be used on
Mac or Windows

M+W: Esc w w w

Indicates a keyboard shortcut can be used on
UNIX or Windows

U+W: Control-l
(lowercase L)

Indicates a keyboard shortcut can be used on
Mac or UNIX

M+U: Control-e

Indicates a keyboard shortcut can be used on
all platforms

All: Esc f n

Indicates a key on the numeric keypad K9

Indicates a function key, not the shifted F key F10

Some shortcuts use the Esc (Escape) key. To use these shortcuts
press and release the Esc key and then press and release each key
in succession. For example, the keyboard shortcut to save a file is:
Esc f s, which means to press and release the Esc key, then press
and release the unshifted f key, and press and release the unshifted
s key. Some Esc shortcuts use a shifted letter; for example the
shortcut to save all open files Esc f S means to press and release
the Esc key, then press and release the unshifted f key, and press
and release the shifted s key. In the rest of this book, the Esc key is
represented by the exclamation point (!).

All shortcuts shown are for FrameMaker v7. Some shortcuts work
for earlier versions as well.

Shortcut Task

All: 0 (zero) Turn off a checkbox

All: 1 (one) Turn on a checkbox

All: Backspace Delete previous character

All: Click the frame name in the
status bar or open Object
Properties (Esc g o) to rename it

Rename a selected reference
frame

All: Control-0 (zero) Insert a variable by typing the
first few unique characters of
its name (until FrameMaker
recognizes it) and then
pressing Return

All: Control-4 Apply a condition tag to
selected text by typing the first
few unique characters of the
tag (until FrameMaker
recognizes it) and then
pressing Return

All: Control-5 Remove a condition tag from
selected text by typing the first
few unique characters of the
tag (until FrameMaker
recognizes it) and then
pressing Return

All: Control-6 Make the selected text
unconditional

All: Control-8 Apply a character format by
typing the first few unique
characters of its tag (until
FrameMaker recognizes it)
and then pressing Return

All: Control-9 Apply a paragraph format by
typing the first few unique
characters of its tag (until
FrameMaker recognizes it)
and then pressing Return

All: Control-c Cancel a dialog box

All: Control-d Delete next character

All: Control-g Display the Go To Page dialog
box

All: Control-h Delete previous character

All: Control-k Delete forward to the end of a
line

All: Control-l (lowercase L) Refresh display

All: Control-Return Add rows below bottom
selected row

All: Double click the Word and then
Shift-click at the end of the range
of words

Select a word, then next words

All: Double-click Put your insertion point in a
text frame you just drew

All: Double-click in the text frame
or text line

Deselect a text frame or text
line and put the insertion point
inside it

All: Double-click the item Move an item in a scroll list to
the opposite scroll list

All: Double-click the tag Move a condition tag between
the In and Not In scroll lists

All: Double-click the tag in the As Is
scroll list

Move a condition tag from the
As Is to the In scroll list

All: Double-click the word Select a word

All: Double-click the word in the
Correction scroll list in the Spelling
Checker window

Replace a questioned word

All: Down Arrow Move to next line

All: Esc 0 (zero) d change to first dash pattern

All: Esc 0 (zero) f Change pattern to first fill
pattern (black)

All: Esc 0 (zero) p Change pattern to first pen
pattern (black)

Shortcut Task

